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LETTER TO THE EDITOR 

Dissipation in quantum systems 
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Department of Physical Chemishy, Universiry of Sofia, 1126 Sofia, Bulga~ia 

Received 6 July 1995 

Abstract The quantum dynamics of a mechanical subsystem interacting with a thermal bath 
is studied. A new approach to dissipated quantum mechanics is proposed which is based on the 
thermodynamic treatment of the energy balance. Simple application of the theory to ideal gases 
is considered and equations for the evolution of the main average quantities are derived. 

The dynamics of systems of many quantum particles attracted attention many years ago. It is 
as important for pure theoretical investigation as it is practically. Much of the contemporary 
technological progress is due to collective phenomena such as phonon-electron interactions 
[I], quasiparticle excitations [Z], etc. In this sense, it is interesting to develop a theory 
to describe the irreversible mechanics of complex quantum systems. In the literature, 
some authors have introduced dissipative Schrodinger equations [3,4], while others have 
incorporated stochastic sonrces in the wavefunction Hilbert space [5,6]. A very useful idea 
is to divide the whole system into a subsystem under observation and thermal bath [7,8]. In 
this manner either quantum stochastic equations [9-111 or reduced density matrix [2] and 
master [12] equations have been derived. Finally, the problem of quantum chaos has also 
been discussed [13,14]. 

The goal of the present letter is to apply the method of subsystem-bath separation 
to justify a new heuristic approach to dissipative quantum mechanics developed by the 
present author [15]. Let us consider a mechanical system consisting of a constant number 
of particles situated in a box with constant volume V. Macroscopically, the system is at 
thermodynamic equilibrium. In the framework of the quantum mechanics, the dynamics of 
microscopic processes occuning in the system is described by the Schrodinger equation 

where V is the wavefunction and 7? is the Hamiltonian of the system. At a given moment 
accepted as initial, N system particles are chosen and called the subsystem S, while the 
excluded part of the system is called bath B. The aim of the present consideration is to 
describe the evolution of the subsystem interchanging euergy with the bath. The Hamiltonian 
of the whole system can be presented as a sum of the subsystem and bath Hamiltonians 
plus a potential accounting for the SB interaction [8] 

2 = f i 7 i s + G B + ~ s B .  (2) 
Due to the last term the subsystem and bath are coupled and in this way the processes 
occuning in S depend on B and vice verso. Let us consider the weak SB interaction limit. 
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In this case the correlation part of the wavefunction which is due to the subsystem-bath 
interaction does not contribute in the frame of a linear analysis. Hence, 9 can be presented 
as a product of the wavefunctions @ and 0 of the subsystem and bath, respectively, 

Here T is the 3N-dimensional vector of the subsystem particles coordinates and R is the 
corresponding vector of the bath. Equation (3) implies the statistical independence of S and 
B. The factorization of the wavefunction is a very popular approach for modelling processes 
in many-particle quantum systems [7]. 

Introducing expressions (2) and (3) in equation (l), multiplying the. result by the 
complex conjugated wavefunction of the bath or subsystem and integrating over R or 
r one obtains the following two equations describing the evolution of the subsystem and 
bath wavefunctions 

9 = @(T, t )O(R,  t ) .  (3) 

(4) 
. a 4  

a t  
fi-=x $4 + (EB -Ed4 

The constrained and average energies of the bath and subsystem are introduced here by the 
relations - ao 

- a 4  

EB(7,  t )  @*(% 'r UsB)odR EB@) =%/@*at d R  

Es(R, t )  = 

s 
1 4*('& + us~)Q)dT E&) = W 1 4 ' ~  dr .  

Due to these expressions, equations (4) and (5) are coupled and a method to obtain rigorously 
their solution is the well known iterative procedure. However, these equations are still many- 
particle ones and the application of this method is practically impossible. In the present study 
an alternative approach is proposed which is based on a statistical thermodynamic treatment 
of the problem 1151. The basic idea is that instead of solving the coupled equations (4) and 
(5) one can express the unknown quantities in equation (4) in terms of the wavefunction @ 
to obtain a mean field self-consistent equation. 

The possibility of completing such a program is provided by combination of statistical 
and non-equilibrium thermodynamics of irreversible processes. Due to conservation of the 
system energy, the conditional energy of the subsystem can be calculated by 

However, neither S nor B are isolated p&ts and usage of the energy as a function of state is 
not appropriate. As mentioned before, the whole system is at thermodynamic equilibrium. 
This means that during the evolution of the considered microscopic processes no change 
in the macroscopic state takes place. For this reason, all thermodynamic parameters of 
the system like its volume V, temperature T, etc, remain constant. According to the 
thermodynamics, the characteristic function of the subsystem at constant N ,  V and T is 
the free energy F which can be related to the subsystem energy via the Gibbs-Helmholtz 
equation 

~~ 

&(T, t )  = + E B  - E,(r, t ) .  (6)  

where ,3 = (kT)-' and k is the Boltzmann constant. Using this relation and equation (13, 
equation (4) can be rewritten as 
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where S F  = - f is the difference between the mean and conditional free energies of the 
subsystem. This equation is a Schrodinger one for a subsystem interacting weakly with an 
equilibrium bath having temperature T. 

Let us consider first the case of the quasistatic evolution of the microscopic processes. In 
the framework of the theory of equilibrium thermodynamic fluctuations [16], the probability 
density of finding the subsystem at a given state is exponentially proportional to the 
derivation of the subsystem's free energy from its equilibrium value, i.e. 

SF, ockTln[@['. 

Therefore, equation (7) takes the form 

Equation (8) is a mean-field Schrodinger equation describing the quasistatic fluctuations of 
the particles configuration in the subsystem. Its solution is 

where [E,(N, V), v"(T. N. V ) ]  is the set of eigenvalues and normalized eigenfunctions of 
the subsystem Hamiltonian satisfying the ordinary stationary Schrodinger equation 

%.SW = Ed+%. 

One can calculate from equation (9) the probability density of finding the subsystem at a 
given configuration if the number of particles N, volume V and temperature T are constant: 

As seen, this is the well known quantum canonical Gibbs distribution. The average free 
energy of the subsystem can be obtained by the normalization of equation (10) and the 
result 

- 
F(N, V, T) = - k ~ ~ n x e x p ( - ~ , / k ~ )  

n 

coincides with the equilibrium statistical thermodynamics expression [16]. 
The fact that the probability density provided by equation (8) is time independent is not 

surprising because it was derived in a quasistatic approximation. To take into account the 
relaxation processes one should complete equation (8) by the irreversible part SFj  of the 
free energy changes to obtain 

For the sake of further considerations, the exact form of the subsystem Hamiltonian is 
introduced in equation (11). Here V (a/ar)  is a 3N dimensional nabla operator, M is 
the 3N x 3N diagonal mass matrix and U is the subsystem potential energy. Equation (11) 
requires an expression for 6Fi. As has been demonstrated [15], the probabilistic presentation 
of the quantum mechanics is more appropriate for doing this. In general, the complex 
wavefunction can be presented by two real functions, p and '2, as 

Q = fiexp(ii2). (12) 
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It is clear that p = lQ,12 is the probability density. Substituting expression (12) in 
equation (1 1) the latter splits into two new equations corresponding to the real and imaginary 
pnaS: 

aP - + v .  (pv) = 0 
at 

The velocity 3N dimensional vector v is introduced here via the relation 

M -  w =RVQ. (15) 
Equation (13) is the continuity equation in the probability space while equation (14) is the 
'momentum balance' there. 

The introduction of p and z, instead of Q, by relations (12) and (15) helps to model 
the irreversible part of the free energy production. According to the linear non-equilibrium 
thermodynamics [16], a linear relationship between the gradient of 8 6  and velocity v exists 

V6Fi = B .  v (16) 
where B is the 3N x 3N friction matrix being positively defined. In general, B is a 
function of the particle coordinate T and in the nonlinear case of the velocity w. Introducing 
equation (16) in equation (14), the following equation is obtained: 

Equations (13) and (17) are a self-consistent system of differential equations providing the 
probability density evolution in the subsystem configuration space. Once the solution for p 
and v has been obtained, one can reconstmct the wavefunction Q, by means of equations (12) 
and (15). Since at equilibrium v = 0, according to equation (17) the equilibrium probability 
density is given by the canonical Gibbs distribution (10) again. In the case of high friction 
limit the first two inertial terms of equation (17) can be neglected compared to the third one 
and after inte-mtion of the result over ,9 one gets the following expression for the velocity: 

Introducing this into the continuity equation (13) the latter acquires the form 

Note that this equation is self-consistent only if B is independent of the velocity v. The 
last term in the small brackets of equation (18) is the so-called 'quantum potential' which 
disappears i n  the classical limit h -F 0. In this case, equation (18) reduces to a Fokker- 
Planck equation 

- -V-B- ' . (pVU+kTVp)  aP 
at 

which is a basic result of the theory of classical Markov diffusion processes and provides 
as equilibrium solution the Gibbs-Boltzmann configuration distribution. 

Finally, let us apply our theory to the simplest model of a subsystem, i.e. an ideal gas. In 
this case all subsystem particles are identical and not interacting with each other. The mass 
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and friction matrices are given by M = ml and'B = bl where I is the 3N x 3N dimensional 
unit matrix, m and b are the mass and friction coefficient of a particle, respectively. The 
potential energy U is due only to extemal fields and is modelled in the present study by 

U = imw r - f e r .  

In this harmonic presentation f is a constant force. It is well known that the quantum 
equilibrium distribution of a harmonic oscillator being the sum over the quantum states of 
the expression (10) is Gaussian. For this reason we are looking for a solution of equation (18) 
in the form of a normal dishibution function 

1 2 2  

Substituting the above expressions in equation (18), the following two equations 
describing the evolution of the average configuration T and dispersion U' are derived: 

' h2kT 1 ' ,dB]u2=kT. 1 
2 at 

~ 

As seen, both equations are affected by quantum effects. In the classical limit these equations 
reduce to well known results. While equation (19) describes the average response against a 
constant external force, equation (20) is relevant to quantum Brownian motion and diffusion. 
The quantum terms complicate finding the solutions of these equations. F e  only simple 
results we have obtained are the equilibrium expressions 

which coincide with the expressions provided by the equilibrium statistical mechanics [SI. 
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